

Date: 11/07/22 GRADE: XIIA

MONTHLY TEST -02 (2022-23) MATHEMATICS [041]

Max marks: 20 Time: 1 Hour

General Instructions:

- 1) Questions 1 to 4 carries 1 mark each.
- 2) Questions 5 to 8 carries 2 marks each.
- 3) Questions 9 and 10 carries 4 marks each.
- 4) All questions are compulsory.

SI No	Questions	Marks
	SECTION A	
1	A is a matrix of order $3x3$, such that $ A = 12$. Find $ A \cdot adjA $. a) 144 b) 1728 c) 12 d) 1	1
2	Let A={1,2,3} and R = {(1,1), (3,3), (1,2)} Choose the minimum number of terms so that the relation becomes equivalence relation. a) (2,2) b) (2,1) c) (2,1), (1,2), (1,3), (3,1), (2,2) d) (2,2), (2,1)	1
3	Find x, if $[5 - xx + 124]$ is singular a) x= 0 b) x= -3 c) x = 3 d) x = 5 or -1	1
4	$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} & a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ if } A_{ij} \text{ is the cofactor of } a_{ij}, \text{ find} \\ a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} \\ a_{10} & b_{10} + b_{10} + b_{10} = c_{10} A_{10} + b_{10} + b_$	1
	SECTION B	
5	If area of the triangle is 35 sq.units with vertices (2,-6) ,(5,4) , (k,4).find the value of k.	2
6	Let f: N \rightarrow N be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ bijective or not.	2

7	Let A = $\{1,2,3,,10\}$ and R be the relation in A x A defined by (a, b) R (c, d) iff a + d = b + c for (a, b), (c, d) in A x A. Prove that R is a transitive relation. Also obtain the equivalence class [(3,4)].	2
8	A = [31 - 12] show that A ² -5A +7I = 0Hence find A ⁻¹ .	2
	SECTION C	
9	A = [412 - 5 - 33 - 111 - 7] find A ⁻¹ and hence solve 4x-5y-11z=12, x-3y+z=1, 2x+3y-7z =2	4
10	Found that the swing traced the path of a Parabola as given by $y = x^2$.	4
	Answer the following questions using the above information.	
	1. Let $f: R \rightarrow R$ be defined by $f(x) = x^2$ is a. Neither Surjective nor Injective b. Surjective c. Injective d. Bijective	
	 2. Let f: N → N be defined by f(x) = x² is a. Surjective but not Injective b. Surjective c. Injective d. Bijective 	
	3. Let f: $\{1,2,3,4\} \rightarrow \{1,4,9,16\}$ be defined by $f(x) = x^2$ is a. Bijective b. Surjective but not Injective c. Injective but not Surjective d. Neither Surjective nor Injective	
	4. Let : $N \rightarrow R$ be defined by $f(x) = x^2$. Range of the function among the following is a. {1, 4, 9, 16,} b. {1, 2,3,4,5,} c. R (Set of real numbers) d. {1, $\sqrt{2}$, , $\sqrt{3}$,}	